FREE ACTIONS OF FINITE GROUPS ON 3-DIMENSIONAL NILMANIFOLDS WITH HOMOTOPICALLY TRIVIAL TRANSLATIONS

Daehwan Koo*, Eunmi Park**, and Joonkook Shin***

ABSTRACT. We show that if a finite group G acts freely with homotopically trivial translations on a 3-dimensional nilmanifold \mathcal{N}_p with the first homology $\mathbb{Z}^2 \oplus \mathbb{Z}_p$, then either G is cyclic or there exist finite nonabelian groups acting freely on \mathcal{N}_p which yield orbit manifolds homeomorphic to \mathcal{N}/π_3 or \mathcal{N}/π_4 .

1. Introduction

Let \widetilde{X} be a connected, simply connected space with a properly discontinuous action of a discrete group Γ so that it acts as a covering transformations. Let G be a group acting on the manifold $M = \Gamma \backslash \widetilde{X}$. Let \widetilde{G} be the group of liftings of G to the universal covering so that $\widetilde{G} \subset \operatorname{Homeo}(\widetilde{X})$. This fits the short exact sequence

$$1 \longrightarrow \Gamma \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1.$$

Let $\mathcal N$ be the 3–dimensional Heisenberg group; i.e. $\mathcal N$ consists of all 3×3 real upper triangular matrices with diagonal entries 1. Thus $\mathcal N$ is a simply connected, 2-step nilpotent Lie group, and it fits an exact sequence

$$1 \to \mathbb{R} \to \mathcal{N} \to \mathbb{R}^2 \to 1$$

where $\mathbb{R} = \mathcal{Z}(\mathcal{N})$, the center of \mathcal{N} . Hence \mathcal{N} has the structure of a line bundle over \mathbb{R}^2 . We take a left invariant metric coming from the

Received January 08, 2020; Accepted January 29, 2020.

²⁰¹⁰ Mathematics Subject Classification: Primary 57S25; Secondary 57M05, 57S17.

Key words and phrases: affine conjugacy, almost Bieberbach group, group action, Heisenberg group, homotopically trivial translation.

^{***} The corresponding author.

orthonormal basis

$$\left\{ \left[\begin{array}{ccc} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right] \right\}$$

for the Lie algebra of \mathcal{N} . This is, what is called, the Nil-geometry and its isometry group is $\mathrm{Isom}(\mathcal{N}) = \mathcal{N} \rtimes O(2)$ [13]. All isometries of \mathcal{N} preserve orientation and the bundle structure.

We say that a closed 3-dimensional manifold M has a Nil-geometry if there is a subgroup π of $\mathrm{Isom}(\mathcal{N})$ so that π acts properly discontinuously and freely with quotient $M = \mathcal{N}/\pi$. The simplest such a manifold is the quotient of \mathcal{N} by the lattice consisting of integral matrices. For each integer p > 0, let

$$\Gamma_p = \left\{ \begin{bmatrix} 1 & l & \frac{n}{p} \\ 0 & 1 & m \\ 0 & 0 & 1 \end{bmatrix} \middle| l, m, n \in \mathbb{Z} \right\}.$$

Then Γ_1 is the discrete subgroup of \mathcal{N} consisting of all matrices with integer entries and Γ_p is a lattice of \mathcal{N} containing Γ_1 with index p. Clearly

$$\mathrm{H}_1(\mathcal{N}/\Gamma_p;\mathbb{Z}) = \Gamma_p/[\Gamma_p,\Gamma_p] = \mathbb{Z}^2 \oplus \mathbb{Z}_p.$$

Note that these Γ_p 's produce infinitely many distinct nilmanifolds

$$\mathcal{N}_p = \mathcal{N}/\Gamma_p$$

covered by \mathcal{N}_1 . We shall call

$$\mathcal{N}_1 = \mathcal{N}/\Gamma_1$$

the standard nilmanifold.

The classifying finite group actions on a 3-dimensional nilmanifold can be understood by the works of Bieberbach, L. Auslander and Waldhausen [6, 7, 14]. Free actions of cyclic, abelian and finite groups on the 3-torus were studied in [8], [11] and [5], respectively. If a finite group G acts freely on the standard nilmanifold \mathcal{N}_1 , then either G is cyclic, or there does not exist any finite group acting freely on the standard nilmanifold \mathcal{N}_1 which yields an infra-nilmanifold homeomorphic to \mathcal{N}/π_3 or $\mathcal{N}/\pi_4([3])$. Free actions of finite abelian groups on the 3-dimensional nilmanifold \mathcal{N}_p with the first homology $\mathbb{Z}^2 \oplus \mathbb{Z}_p$ were classified in [1]. Recently, the results of [1] were generalized without the abelian condition([2]).

We are interested in finding all free actions by finite groups G on the nilmanifold \mathcal{N}_p , under the condition that no translations of \mathcal{N} are

$$1 \longrightarrow \Gamma_p \longrightarrow \widetilde{G} \longrightarrow G \longrightarrow 1.$$

If the G is finite and the action is free, then \mathcal{N}_p/G is again a manifold whose fundamental group is \widetilde{G} . In fact, $\mathcal{N}_p/G = \mathcal{N}/\widetilde{G}$ is homeomorphic to an infra-nilmanifold. In other words, there is an imbedding of \widetilde{G} into the affine group $\mathrm{Aff}(\mathcal{N}) = \mathcal{N} \rtimes \mathrm{Aut}(\mathcal{N})$. Such a group is called an almost Bieberbach group. Since all almost Bieberbach groups for \mathcal{N} are classified already, all we need to do is, for each 3-dimensional almost Bieberbach group π , finding a normal subgroup N of π which is isomorphic to Γ_p . Then we describe the action of the finite quotient $G = \pi/N$ on the nilmanifold $\mathcal{N}_p = \mathcal{N}/\Gamma_p$. This G-action on \mathcal{N}_p will be free.

Suppose there are two normal subgroups N_1, N_2 of π . The two actions of $\pi/N_1, \pi/N_2$ are *equivalent* if and only if there exists a homeomorphism f of \mathcal{N} which conjugates the pair (N_1, π) into (N_2, π) . Of course, such a conjugation is achieved by an affine map $f \in \text{Aff}(\mathcal{N})$.

The following is the list for 15 kinds of the 3-dimensional almost Bieberbach groups imbedded in $\mathrm{Aff}(\mathcal{N}) = \mathcal{N} \rtimes (\mathbb{R}^2 \rtimes \mathrm{GL}(2,\mathbb{R}))$ ([2, p.1414]). We shall use

$$t_1 = \left(\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ I \right), \quad t_2 = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \ I \right), \quad t_3 = \left(\begin{bmatrix} 1 & 0 & -\frac{1}{K} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ I \right),$$

respectively, where I is the identity in $\operatorname{Aut}(\mathcal{N}) = \mathbb{R}^2 \rtimes \operatorname{GL}(2,\mathbb{R})$. In each presentation, n is any positive integer and t_3 is central except π_3 and π_4 . Note that t_1 and t_2 are fixed, but K in t_3 varies for each $\pi_{i,j}$. For example, K = n for π_1 ; K = 2n for π_2 , etc.

$$\begin{split} \pi_1 &= \left< t_1, t_2, t_3 \mid [t_2, t_1] = t_3^n \right>, \\ \pi_2 &= \left< t_1, t_2, t_3, \alpha \mid [t_2, t_1] = t_3^{2n}, \ \alpha^2 = t_3, \alpha t_1 \alpha^{-1} = t_1^{-1}, \alpha t_2 \alpha^{-1} = t_2^{-1} \right>, \\ \pi_3 &= \left< t_1, t_2, t_3, \alpha \mid [t_2, t_1] = t_3^{2n}, \ [t_3, t_1] = [t_3, t_2] = 1, \ \alpha t_3 \alpha^{-1} = t_3^{-1}, \\ \alpha t_1 \alpha^{-1} &= t_1, \ \alpha t_2 = t_2^{-1} \alpha t_3^{-n}, \ \alpha^2 = t_1 \right>, \\ \pi_4 &= \left< t_1, t_2, t_3, \alpha, \beta \mid [t_2, t_1] = t_3^{4n}, \ [t_3, t_1] = [t_3, t_2] = [\alpha, t_3] = 1, \\ \beta t_3 \beta^{-1} &= t_3^{-1}, \alpha t_1 = t_1^{-1} \alpha t_3^{2n}, \alpha t_2 = t_2^{-1} \alpha t_3^{-2n}, \\ \alpha^2 &= t_3, \beta^2 = t_1, \beta t_1 \beta^{-1} = t_1, \beta t_2 = t_2^{-1} \beta t_3^{-2n}, \\ \alpha \beta &= t_1^{-1} t_2^{-1} \beta \alpha t_3^{-(2n+1)} \right>, \end{split}$$

$$\pi_{5,1} = \langle t_1, t_2, t_3, \alpha | [t_2, t_1] = t_3^{4n-2}, \ \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^4 = t_3 \rangle,$$

$$\pi_{5,2} = \langle t_1, t_2, t_3, \alpha | [t_2, t_1] = t_3^{4n}, \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^4 = t_3^3 \rangle,$$

$$\begin{split} \pi_{5,3} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{4n}, \alpha t_1 \alpha^{-1} = t_2, \, \alpha t_2 \alpha^{-1} = t_1^{-1}, \, \alpha^4 = t_3 \, \rangle, \\ \pi_{6,1} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{3n}, \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1} t_2^{-1}, \alpha^3 = t_3 \, \rangle, \\ \pi_{6,2} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{3n}, \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1} t_2^{-1}, \alpha^3 = t_3^2 \, \rangle, \\ \pi_{6,3} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{3n-2}, \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1} t_2^{-1}, \alpha^3 = t_3^2 \, \rangle, \\ \pi_{6,4} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{3n-1}, \alpha t_1 \alpha^{-1} = t_2, \alpha t_2 \alpha^{-1} = t_1^{-1} t_2^{-1}, \alpha^3 = t_3 \, \rangle, \\ \pi_{7,1} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{6n}, \alpha t_1 \alpha^{-1} = t_1 t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^6 = t_3 \, \rangle, \\ \pi_{7,2} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{6n-2}, \alpha t_1 \alpha^{-1} = t_1 t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^6 = t_3 \, \rangle, \\ \pi_{7,3} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{6n}, \alpha t_1 \alpha^{-1} = t_1 t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^6 = t_3^5 \, \rangle, \\ \pi_{7,4} &= \langle \, t_1, t_2, t_3, \alpha \, | \, [t_2, t_1] = t_3^{6n-4}, \alpha t_1 \alpha^{-1} = t_1 t_2, \alpha t_2 \alpha^{-1} = t_1^{-1}, \alpha^6 = t_3^5 \, \rangle. \end{split}$$

In this paper, we showed that if a finite group G acting freely on \mathcal{N}_p with homotopically trivial translations, then either G is cyclic, or there exist finite nonabelian groups acting freely on \mathcal{N}_p which yield orbit manifolds homeomorphic to \mathcal{N}/π_3 or \mathcal{N}/π_4 . Note that our results cannot be obtained directly from [2], and differ in the following two respects. Firstly it is very hard to find a necessary and sufficient condition for being a normal nilpotent subgroup isomorphic to Γ_p of an almost Bieberbach group, because of many unknown variables. But a necessary and sufficient condition for being a normal subgroup can be obtained using a conjugation by the second Bieberbach theorem in the case of homotopically trivial translations. Second, since the finite groups acting freely on \mathcal{N}_p in [2] are represented by generators, it is difficult to know the groups exactly. But in this paper, we show that there exist finite nonabelian group actions only in two classes π_3, π_4 , and those are the dihedral groups D_k , D_{2k} , dicyclic groups $Dic_{\frac{k}{2}}$, Dic_k , or G_k in Theorem 3.1.

Let G be a finite group acting freely on the nilmanifold \mathcal{N}_p . Then clearly, $M = \mathcal{N}_p/G$ is a topological manifold, and $\pi = \pi_1(M) \subset \operatorname{Homeo}(\mathcal{N})$ is isomorphic to an almost Bieberbach group. Let π' be an embedding of π into Aff(\mathcal{N}). Such an embedding always exists. Since any isomorphism between lattices extends uniquely to an automorphism of \mathcal{N} , we may assume the subgroup Γ_p goes to itself by the embedding $\pi \to \pi' \subset \operatorname{Aff}(\mathcal{N})$. From now on, we shall abuse the same notation Γ_p in Aff(\mathcal{N}). Then the quotient group $G' = \pi'/\Gamma_p$ acts freely on the nilmanifold $\mathcal{N}_p = \mathcal{N}/\Gamma_p$. Moreover, $M' = \mathcal{N}_p/G'$ is an infra-nilmanifold. Thus, a finite free topological action (G, \mathcal{N}_p) gives rise to an isometric action (G', \mathcal{N}_p) on the nilmanifold \mathcal{N}_p . Clearly, \mathcal{N}_p/G and \mathcal{N}_p/G' are sufficiently large, see [7, Proposition 2]. By works of Waldhausen and Heil [6, 14], M is homeomorphic to M'.

DEFINITION 1.1. Let groups G_i act on manifolds M_i , for i=1,2. The action (G_1,M_1) is topologically conjugate to (G_2,M_2) if there exists an isomorphism $\theta: G_1 \to G_2$ and a homeomorphism $h: M_1 \to M_2$ such that

$$h(g \cdot x) = \theta(g) \cdot h(x)$$

for all $x \in M_1$ and all $g \in G_1$. When $G_1 = G_2$ and $M_1 = M_2$, topologically conjugate is the same as weakly equivariant.

For \mathcal{N}_p/G and \mathcal{N}_p/G' being homeomorphic implies that the two actions (G, \mathcal{N}_p) and (G', \mathcal{N}_p) are topologically conjugate. Consequently, a finite free action (G, \mathcal{N}_p) is topologically conjugate to an isometric action (G', \mathcal{N}_p) . Such a pair (G', \mathcal{N}_p) is not unique. However, by the result obtained by Lee and Raymond [10], all the others are topologically conjugate.

DEFINITION 1.2. Let $\pi \subset \text{Aff}(\mathcal{N}) = \mathcal{N} \rtimes \text{Aut}(\mathcal{N})$ be an almost Bieberbach group, and let N_1, N_2 be subgroups of π . We say that (N_1, π) is affinely conjugate to (N_2, π) , denoted by $N_1 \sim N_2$, if there exists an element $(t, T) \in \text{Aff}(\mathcal{N})$ such that $(t, T)\pi(t, T)^{-1} = \pi$ and $(t, T)N_1(t, T)^{-1} = N_2$.

Our classification problem of free finite group actions (G, \mathcal{N}_p) with

$$\pi_1(\mathcal{N}_n/G) \cong \pi$$

can be solved by finding all normal nilpotent subgroups N of π each of which is isomorphic to Γ_p , and classify (N,π) up to affine conjugacy. This procedure is a purely group-theoretic problem and can be handled by affine conjugacy.

2. Criteria for affine conjugacy

In this section, we develop a technique for finding and classifying all possible finite group actions on the 3-dimensional nilmanifold. Let us

possible finite group actions on the 3-dimensional nilmanifold. Let us define
$$\zeta(x) = \begin{pmatrix} \begin{bmatrix} 1 & 0 & -x \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, I$$
. Then $\Gamma_p = \langle t_1, t_2, \zeta(1/p) \rangle$ is a lattice of $\mathcal N$ such that $[t_2, t_1] = \zeta(1/p)^p = \zeta(1)$.

In this paper, we shall deal with the free action of a finite group G acting on \mathcal{N}_p with homotopically trivial translations. Our situation is as follows. Let π be an almost Bieberbach group, and N' be its nil-radical

(maximal normal nilpotent subgroup). Let N be a normal nilpotent subgroup of π . Suppose N'/N is generated by a central element of the nilpotent Lie group. Then we have a following diagram:

$$\begin{array}{ccccc}
N & \stackrel{=}{\longrightarrow} N \\
\downarrow & & \downarrow \\
1 & \longrightarrow N' & \longrightarrow \pi & \longrightarrow \Phi & \longrightarrow 1 \\
\downarrow & & \downarrow & \downarrow = \\
1 & \longrightarrow \mathbb{Z}_k & \longrightarrow G & \longrightarrow \Phi & \longrightarrow 1
\end{array}$$

Note that $N \otimes \mathcal{Z} = N' \otimes \mathcal{Z}$, where \mathcal{Z} is the center of the nilpotent Lie group \mathcal{N} . In other words, N and N' differ only in the central direction, which implies that the translation part of the action of G on the nilmanifold \mathcal{N}/N is \mathbb{Z}_k . We will classify all such pairs (π, N) 's. For an almost Bieberbach group π , we want to find all normal subgroups N which satisfy

- (a) N is isomorphic to the standard lattice Γ_p ,
- (b) $N'/(N' \cap \mathcal{Z}(\mathcal{N})) = N/(N \cap \mathcal{Z}(\mathcal{N}))$ in $\mathcal{N}/\mathcal{Z}(\mathcal{N})$.

The condition (b) comes from homotopically trivial translations. It is well known that, for any lattice Γ of \mathcal{N} , $\Gamma \cap (\mathcal{Z}(\mathcal{N}))$ is a lattice of $\mathcal{Z}(\mathcal{N})$. Thus such an Γ fits the short exact sequence

$$1 \longrightarrow \mathbb{Z} = \mathcal{Z}(\Gamma) \longrightarrow \Gamma \longrightarrow \mathbb{Z}^2 \longrightarrow 1.$$

Clearly \mathbb{Z}^2 is generated by the images of $\{t_1, t_2\}$ and \mathbb{Z} is generated by $\zeta(1/K)$. Therefore there exists a generating set of Γ consisting of

$$\Gamma = \{t_1 t_3^u, t_2 t_3^v, [t_2, t_1]^{1/p} = \zeta(1/p)\}.$$

Note that there exists a conjugation which maps Γ_p onto Γ by the second Bieberbach theorem. In fact, let

$$J = t_1^{-\frac{v}{K}} t_2^{\frac{u}{K}},$$

and let μ_J denote the conjugation by J. Then clearly

$$\mu_J(t_1) = t_1 t_3^u,$$

 $\mu_J(t_2) = t_2 t_3^v.$

We denote this image by N(u, v). That is,

$$N(u,v) = \langle t_1 t_3^u, t_2 t_3^v, \zeta(1/p) \rangle$$

for $u, v \in \mathbb{Z}$. Therefore, N(u, v) is the most general subgroup of \mathcal{N} that satisfies (a) and (b) above.

Conditions on N(u, v):

The condition $\zeta(1/p) \in \pi$ is necessary for N(u, v) to be a subgroup of π . Since $\zeta(1/K)$ is one of the generators of π ,

(1) p must divide K, say, K = kp.

Now $\mu_{J^{-1}}$ will map N(u, v) onto Γ_p . That is,

$$\mu_{J^{-1}}(t_1 t_3^u) = t_1,$$

$$\mu_{J^{-1}}(t_2 t_3^v) = t_2,$$

$$\mu_{J^{-1}}(t_3) = t_3.$$

We also need N(u,v) to be normal in π . Let $\alpha \in \pi$ be an element of a non-trivial holonomy. From now on, we shall use the notation $\widehat{\alpha} = \mu_{J^{-1}}(\alpha)$ and $\widehat{\pi} = \mu_{J^{-1}}(\pi)$. Then we have $\mu_{\alpha}(t_1t_3{}^u)$, $\mu_{\alpha}(t_2t_3{}^v) \in N(u,v)$. This is equivalent to

$$\mu_{\widehat{\alpha}}(t_1), \ \mu_{\widehat{\alpha}}(t_2) \in \mu_{J^{-1}}(N(u,v)) = \Gamma_p.$$

When we write them as products of t_i 's, we can get

$$\mu_{\widehat{\alpha}}(t_1) = t_1^{n_1} t_2^{n_2} (t_3^k)^{n_3},$$

$$\mu_{\widehat{\alpha}}(t_2) = t_1^{m_1} t_2^{m_2} (t_3^k)^{m_3}.$$

Since $n_i, m_i (i = 1, 2)$ are integers,

(2) Both n_3 and m_3 are integers.

Note that

$$N(u + ka, v + kb) = \langle (t_1t_3^u)(t_3^k)^a, (t_2t_3^v)(t_3^k)^b, \zeta(1/p) \rangle = N(u, v),$$

where u, v take integer values $0, 1, 2, \dots, k-1$.

From the above two conditions (1) and (2), we can determine the form of a normal subgroup N(u, v). Next we analyze when the pairs $\{u, v\}$ yield distinct $\widehat{\alpha}$'s. In order to denote $\widehat{\alpha}$ clearly, we rather write it as the following form

$$\widehat{\alpha} = T \cdot \alpha = \left(t_1^{\ell_1} t_2^{\ell_2} t_3^{\ell_3}\right) \cdot \alpha$$

and look into $T \in \mathcal{N}$.

Finally we try to determine the finite group $G = \widehat{\pi}/\Gamma_p$. It is an extension of a cyclic group \mathbb{Z}_k by the holonomy group Φ of π , where \mathbb{Z}_k is the quotient $\frac{\mathcal{Z}(\mathcal{N}) \cap \widehat{\pi}}{\mathcal{Z}(\mathcal{N}) \cap \Gamma_p}$. Note that G fits the following extension

$$1 \longrightarrow \mathbb{Z}_k \longrightarrow G \longrightarrow \Phi \longrightarrow 1.$$

For each generator of the holonomy group Φ , we analyze the action. Let $\alpha = (a, A) \in \mathcal{N} \rtimes \operatorname{Aut}(\mathcal{N})$, and A have order d (holonomy order of α). Then we can write

$$\alpha^d = t_1^{d_1} t_2^{d_2} t_3^{d_3}.$$

In particular, we will show that if there exists an element α satisfying $d_3 \neq 0$, then G is cyclic of order $d(\frac{K}{p}) = dk$ which is generated by the image of $\widehat{\alpha}$ or $\widehat{\alpha}^{-1}t_3$. (see Theorem 3.1)

3. Free actions on \mathcal{N}_p with orbit space \mathcal{N}/π

For each almost Bieberbach group π , we list all possible N(u,v) and corresponding $\widehat{\alpha}$. In all cases, p must divide K(=kp). Recall that $t_3 = [t_2, t_1]^{\frac{1}{K}}$ is a generator of $\widehat{\pi}$, and $[t_2, t_1]^{\frac{1}{p}} = \zeta(1/p) \in \Gamma_p$. Since

$$[t_2, t_1]^{\frac{1}{p}} = ([t_2, t_1]^{\frac{1}{K}})^{\frac{K}{p}} = (t_3)^{\frac{K}{p}} = t_3^k,$$

we have

$$\Gamma_p = \langle t_1, t_2, t_3^k \rangle$$

with $[t_2, t_1] = (t_3^k)^p$. We shall denote these standard generators for Γ_p by s_i such as

$$s_1 = t_1, s_2 = t_2, s_3 = t_3^k$$

so that $[s_2, s_1] = s_3^p$.

Let $N(u,v) = \langle t_1 t_3^u, t_2 t_3^v, t_3^k \rangle \cong \Gamma_p$ be a normal subgroup of π . Then the conjugation by J^{-1} maps

$$\mu_{J^{-1}}(t_1 t_3^u) = t_1 = s_1,$$

$$\mu_{J^{-1}}(t_2 t_3^v) = t_2 = s_2,$$

$$\mu_{J^{-1}}(t_3) = t_3 = s_3^{\frac{1}{k}}.$$

Therefore $\mu_{J^{-1}}$ maps N(u,v) onto the standard Γ_p , and π to $\widehat{\pi}$. Thus $\langle t_1 t_3{}^u, t_2 t_3{}^v, t_3{}^k \rangle$ is normal in π if and only if $\Gamma_p = \langle s_1, s_2, s_3 \rangle$ is normal in $\widehat{\pi}$. Using this fact, we can classify all free actions on \mathcal{N}_p with orbit space \mathcal{N}/π . This was done by the program Mathematica[15] and hand-checked.

Theorem 3.1. The groups that act on \mathcal{N}_p freely with no translations except for homotopy-trivialities are described as follows:

Table 1

\overline{G}	Generator of G	\mathcal{N}_p/G	Conditions on u, v	Conditions on $K = kp$
\mathbb{Z}_k	$t_3 = s_3^{\frac{p}{K}}$	π_1	u = 0, v = 0	n = kp
\mathbb{Z}_{2k}	$\widehat{\alpha} = \alpha$	π_2	u = 0, v = 0	2n = kp
	$\widehat{\alpha} = s_1^{\frac{1}{p}} \cdot \alpha$		$u = 0, v = \frac{k}{2}$	$k \in 2\mathbb{N}, p > 1, 2n = kp$
	$\widehat{\alpha} = \left(s_1^{\frac{1}{p}} s_2^{-\frac{1}{p}} s_3^{-\frac{1}{2p}}\right) \cdot \alpha$		$u = \frac{k}{2}, v = \frac{k}{2}$	$k\in 2\mathbb{N}, p>1, 2n=kp$
D_k	$t_3, \widehat{\alpha} = \alpha$	π_3	u=0, v=0	$p\in 2\mathbb{N}, 2n=kp$
$Dic_{\frac{k}{2}}$	$t_3, \widehat{\alpha} = \left(s_2^{-\frac{1}{p}} s_3^{\frac{1}{4}}\right) \cdot \alpha$		$u = \frac{k}{2}, v = 0$	$k\in 2\mathbb{N}, p\in 2\mathbb{N}, 2n=kp$
D_{2k}	$\widehat{\alpha} = \alpha, \ \widehat{\beta} = \beta$	π_4	u=0, v=0	$p\in 2\mathbb{N}, 4n=kp$
G_k	$\widehat{\alpha} = \left(s_1^{\frac{1}{p}} s_3^{-\frac{1}{4}}\right) \cdot \alpha, \widehat{\beta} = \beta$. 4	$k,p\in 2\mathbb{N}, 4n=kp$
Dic_k	$\widehat{\alpha} = \left(s_1^{\frac{1}{p}} s_2^{-\frac{1}{p}} s_3^{-\frac{1}{2p} - \frac{1}{2}} \right) \cdot \alpha,$		$u = \frac{k}{2}, v = \frac{k}{2}$	$k,p\in 2\mathbb{N}, 4n=kp$
F7	$\widehat{\beta} = \left(s_2^{-\frac{1}{p}} s_3^{\frac{1}{4}}\right) \cdot \beta$			
\mathbb{Z}_{4k}	$\widehat{\alpha} = \alpha$ $\widehat{\alpha} = \left(s_2^{-\frac{1}{p}} s_3^{\frac{1}{4p}}\right) \cdot \alpha$	$\pi_{5,1}$	u = 0, v = 0	4n - 2 = kp
	(= 0 /		$u = \frac{k}{2}, v = \frac{k}{2}$	$k \in 2\mathbb{N}, 4n - 2 = kp$
	$\widehat{\alpha}^{-1}t_3 = s_3 \frac{p}{K} \cdot \alpha^{-1}$	$\pi_{5,2}$	u = 0, v = 0	4n = kp
	$\widehat{\alpha}^{-1}t_3 = \left(s_1^{\frac{1}{p}}s_3^{\frac{p}{K} - \frac{1}{4p}}\right) \cdot \alpha^{-1}$		$u = \frac{k}{2}, v = \frac{k}{2}$	$k \in 2\mathbb{N}, p > 1, 4n = kp$
	$\widehat{\alpha} = \alpha$	$\pi_{5,3}$	u = 0, v = 0	4n = kp
_	$\widehat{\alpha} = \left(s_2^{-\frac{1}{p}} s_3^{\frac{1}{4p}}\right) \cdot \alpha$		$u = \frac{k}{2}, v = \frac{k}{2}$	$k \in 2\mathbb{N}, p > 1, 4n = kp$
\mathbb{Z}_{3k}	$\widehat{\alpha} = \alpha$	$\pi_{6,1}$	u = 0, v = 0	3n = kp
	$\widehat{\alpha} = \left(s_2^{-\frac{1}{p}} s_3^{-\frac{1}{6} + \frac{1}{6p}}\right) \cdot \alpha$ $\widehat{\alpha} = \left(s_2^{-\frac{2}{p}} s_3^{-\frac{1}{3} + \frac{2}{3p}}\right) \cdot \alpha$		$u = \frac{k}{3}, v = \frac{k}{3}$ $u = \frac{2k}{3}, v = \frac{2k}{3}$	$k \in 3\mathbb{N}, p \ge 2, 3n = kp$
	,		0 0	$k \in 3\mathbb{N}, p \ge 3, 3n = kp$
	$\hat{\alpha}^{-1}t_3 = s_3^{\frac{p}{K}} \cdot \alpha^{-1}$	$\pi_{6,2}$	u = 0, v = 0	3n = kp
	$\widehat{\alpha}^{-1}t_3 = \left(s_1^{\frac{1}{p}}s_3^{\frac{p}{K} + \frac{1}{6} - \frac{1}{6p}}\right) \cdot \alpha^{-1}$ $\widehat{\alpha}^{-1}t_3 = \left(s_1^{\frac{2}{p}}s_3^{\frac{p}{K} + \frac{1}{3} - \frac{2}{3p}}\right) \cdot \alpha^{-1}$		$u = \frac{k}{3}, v = \frac{k}{3}$	$k \in 3\mathbb{N}, p \ge 2, 3n = kp$
	,		$u = \frac{2k}{3}, v = \frac{2k}{3}$	
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{p}{K}} \cdot \alpha^{-1}$ $\widehat{\alpha} = \alpha$	$\pi_{6,3} \\ \pi_{6,4}$	u = 0, v = 0 $u = 0, v = 0$	3n - 2 = kp $3n - 1 = kp$
\mathbb{Z}_{6k}	$\widehat{\alpha} = \alpha$	$\pi_{7,1}$	u = 0, v = 0	6n = kp
<i>-</i> 10	$\widehat{\alpha} = \alpha$	$\pi_{7,2}$	u = 0, v = 0	6n - 2 = kp
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{p}{K}} \cdot \alpha^{-1}$	$\pi_{7,3}$	u = 0, v = 0	6n = kp
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{p}{K}} \cdot \alpha^{-1}$	$\pi_{7,4}$	u = 0, v = 0	6n - 4 = kp
		- /	<u> </u>	

where $D_1 = \mathbb{Z}_2$, $D_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$, $Dic_1 = \mathbb{Z}_4$, $G_2 = \mathbb{Z}_2 \times \mathbb{Z}_4$.

Proof. (Type 3.) We know that

$$\widehat{\pi_3} = \langle t_1, t_2, t_3, \widehat{\alpha} | [t_2, t_1] = t_3^{2n}, [t_3, t_1] = [t_3, t_2] = 1, \widehat{\alpha} t_3 \widehat{\alpha}^{-1} = t_3^{-1}, \\ \widehat{\alpha} t_1 \widehat{\alpha}^{-1} = t_1 t_3^{-2u}, \widehat{\alpha} t_2 = t_2^{-1} \widehat{\alpha} t_3^{-n}, \widehat{\alpha}^2 = t_1 t_3^{-u} \rangle,$$

$$\alpha = \left(\begin{bmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right) \right).$$

The family (π_3) is parametrized by K=2n; K is divisible by p. Let K=kp. Conjugations by $\widehat{\alpha}$ yield

$$\begin{split} &\mu_{\widehat{\alpha}}(s_1) = s_1^{-1} s_2^{-0} s_3^{-\frac{2pu}{K}}, \\ &\mu_{\widehat{\alpha}}(s_2) = s_1^{-0} s_2^{-1} s_3^{\frac{p}{2}}, \\ &\mu_{\widehat{\alpha}}(s_3) = s_1^{-0} s_2^{-0} s_3^{-1}. \end{split}$$

The normal condition of Γ_p in $\widehat{\pi_3}$ requires that all the indices (superscripts) in the above be integers so that $-\frac{2u}{k},\ \frac{p}{2}\in\mathbb{Z}$. Therefore we assume p is even. Since $0\leq u< k$, we have u=0 or $\frac{k}{2}$. Thus we have the following two types of normal nilpotent subgroups:

$$N(0,v) = \langle t_1, t_2 t_3^v, t_3^k \rangle, \quad N(k/2,v) = \langle t_1 t_3^{\frac{k}{2}}, t_2 t_3^v, t_3^k \rangle.$$

By using

$$\mu = \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} \frac{v}{2n} \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \right) \in N_{\mathrm{Aff}(\mathcal{N})}(\pi_3),$$

we can show that $N(0,v) \sim N(0,0)$ and $N(k/2,v) \sim N(k/2,0)$. Note that

$$\widehat{\alpha} = \mu_{J^{-1}}(\alpha) = \left(s_1{}^0 s_2{}^{-\frac{2u}{K}} s_3{}^{\frac{pu}{2K}}\right) \cdot \alpha,$$
$$\widehat{\alpha}^2 = s_1{}^1 s_2{}^0 s_3{}^{-\frac{pu}{K}} = s_1 s_3{}^{-\frac{u}{k}}.$$

Hence we only need to deal with the following two cases:

(1) When u = 0, v = 0:

Since $G = \widehat{\pi_3}/\Gamma_p = \langle t_1, t_2, t_3, \widehat{\alpha} \rangle / \langle s_1, s_2, s_3 \rangle$, $\widehat{\alpha}^2 = s_1$ and $\widehat{\alpha}t_3\widehat{\alpha}^{-1} = t_3^{-1}$, the finite group $G = \widehat{\pi_3}/\Gamma_p$ is represented by

$$G = \langle \, \bar{t_3}, \bar{\alpha} \mid \bar{t_3}^k = 1, \, \bar{\alpha}^2 = 1, \, \bar{\alpha} \bar{t_3} \bar{\alpha}^{-1} = \bar{t_3}^{-1}, p \in 2\mathbb{N}, k \in \mathbb{N}, kp = 2n \rangle,$$

which is isomorphic to the dihedral group D_k of order 2k. Note that

G is abelian $\Leftrightarrow k = 1, p = 2n$ or $k = 2, p = n \Leftrightarrow G$ is $D_1 = \mathbb{Z}_2$ or $D_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$.

(2) When $u = \frac{k}{2}, v = 0$:

Recall that $G = \widehat{\pi_3}/\Gamma_p = \langle t_1, t_2, t_3, \widehat{\alpha} \rangle / \langle s_1, s_2, s_3 \rangle$. In this case, since $\widehat{\alpha}^2 = t_1 t_3^{-\frac{k}{2}} = s_1 s_3^{-\frac{1}{2}}$, we have $\bar{\alpha}^2 = \bar{t_3}^{\frac{k}{2}}$. So, we can induce that $G = \widehat{\pi_3}/\Gamma_p = \langle \bar{t_3}, \bar{\alpha} \rangle$ and G is represented by

$$G = \langle \, \bar{t_3}, \bar{\alpha} \mid \bar{t_3}^k = 1, \, \bar{\alpha}^2 = \bar{t_3}^{\frac{k}{2}}, \, \bar{\alpha} \bar{t_3} \bar{\alpha}^{-1} = \bar{t_3}^{-1}, p \in 2\mathbb{N}, k \in 2\mathbb{N}, kp = 2n \rangle.$$

This group is isomorphic to the dicyclic group $Dic_{\frac{k}{2}}$ of order 2k. Note that $G = \widehat{\pi}_3/\Gamma_p$ is abelian $\Leftrightarrow k = 2 \Leftrightarrow G = \langle \bar{\alpha} \rangle = Dic_1 = \mathbb{Z}_4$, where $\bar{\alpha}$ acts on $\mathcal{N}_p = \mathcal{N}/\Gamma_p$ by

$$\widehat{\alpha} = (s_1^{\ 0} s_2^{\ -\frac{2u}{K}} s_3^{\ \frac{pu}{2K}}) \cdot \alpha.$$

Therefore we have the following five affinely non-conjugate actions:

$$D_1 = \mathbb{Z}_2, \quad D_2 = \mathbb{Z}_2 \times \mathbb{Z}_2, \quad D_k(k \ge 3), \quad Dic_1 = \mathbb{Z}_4, \quad Dic_{\frac{k}{2}}(k \in 2\mathbb{N} + 2).$$

To summarize the above statements, the following table gives a complete list of all free actions of finite groups G on \mathcal{N}_p which yield an orbit manifold homeomorphic to \mathcal{N}/π_3 .

$$\begin{array}{lll} \underline{G} & \underline{\text{Conditions on } \mathbf{u}, \mathbf{v}} \\ \mathbb{Z}_2 & u = 0, v = 0 \\ \mathbb{Z}_2 \times \mathbb{Z}_2 & u = 0, v = 0 \\ D_k & u = 0, v = 0 \\ \mathbb{Z}_4 & u = 1, v = 0 \\ Dic_{\frac{k}{2}} & u = \frac{k}{2}, v = 0 \\ \end{array} \begin{array}{ll} \underline{\text{Conditions on } K = kp} \\ k = 1, 2n = p \\ k = 2, n = kp \\ k$$

(Type 4.) It is not hard to see that

$$\begin{split} \widehat{\pi_4} &= \langle \, t_1, t_2, t_3, \widehat{\alpha}, \, \widehat{\beta} \, | \, \, [t_2, t_1] = t_3^{4n}, \, \, [t_3, t_1] = [t_3, t_2] = [\widehat{\alpha}, t_3] = 1, \widehat{\beta} t_3 \widehat{\beta}^{-1} = t_3^{-1}, \\ \widehat{\alpha} t_1 &= t_1^{-1} \widehat{\alpha} t_3^{2n+2u}, \, \widehat{\alpha} t_2 = t_2^{-1} \widehat{\alpha} t_3^{-2n+2v}, \, \widehat{\alpha}^2 = t_3, \, \widehat{\beta}^2 = t_1 t_3^{-u}, \\ \widehat{\beta} t_1 \beta^{-1} &= t_1 t_3^{-2u}, \, \widehat{\beta} t_2 = t_2^{-1} \widehat{\beta} t_3^{-2n}, \, \, \widehat{\alpha} \widehat{\beta} = t_1^{-1} t_2^{-1} \widehat{\beta} \widehat{\alpha} t_3^{-(2n+1)} t_3^{-(u+v)} \, \rangle, \\ \alpha &= \left(\begin{bmatrix} 1 & 0 & -\frac{1}{8n} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \, \left(\begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right) \right), \\ \beta &= \left(\begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{8} \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}, \, \left(\begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \right) \right). \end{split}$$

The family (π_4) is parametrized by K = 4n; K is divisible by p. Let K = kp. Conjugations by $\widehat{\alpha}$, $\widehat{\beta}$ yield

$$\begin{split} \mu_{\widehat{\alpha}}(s_1) &= s_1^{-1} s_2^{\ 0} s_3^{\frac{p(K+4u)}{2K}}, & \mu_{\widehat{\beta}}(s_1) &= s_1^{\ 1} s_2^{\ 0} s_3^{-\frac{2pu}{K}}, \\ \mu_{\widehat{\alpha}}(s_2) &= s_1^{\ 0} s_2^{-1} s_3^{\frac{p(-K+4v)}{2K}}, & \mu_{\widehat{\beta}}(s_2) &= s_1^{\ 0} s_2^{-1} s_3^{\frac{p}{2}}, \\ \mu_{\widehat{\alpha}}(s_3) &= s_1^{\ 0} s_2^{\ 0} s_3^{\ 1}, & \mu_{\widehat{\beta}}(s_3) &= s_1^{\ 0} s_2^{\ 0} s_3^{-1}. \end{split}$$

Since Γ_p is normal in $\widehat{\pi_4}$, we must have $\frac{2u}{k}$, $\frac{2v}{k}$, $\frac{p}{2} \in \mathbb{Z}$. Therefore, we assume p is even. Since $0 \le u, v < k$, we have u, v = 0 or $\frac{k}{2}$. Thus we have the following four types of normal nilpotent subgroups:

$$N_{1} = N(0,0) = \langle t_{1}, t_{2}, t_{3}^{k} \rangle, \qquad N_{2} = N(0, k/2) = \langle t_{1}, t_{2}t_{3}^{\frac{k}{2}}, t_{3}^{k} \rangle,$$

$$N_{3} = N(k/2, 0) = \langle t_{1}t_{3}^{\frac{k}{2}}, t_{2}, t_{3}^{k} \rangle, \qquad N_{4} = N(k/2, k/2) = \langle t_{1}t_{3}^{\frac{k}{2}}, t_{2}t_{3}^{\frac{k}{2}}, t_{3}^{k} \rangle.$$

It needs some calculations to obtain that the normalizer $N_{\text{Aff}(\mathcal{N})}(\pi_4)$ is of the form

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right),$$

where $2x, 2y \in \mathbb{Z}$, $z \in \mathbb{R}$, and $\left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix}\right)$ is one of the following eight

$$\begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}, \\ \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}.$$

By using

$$\mu = \left(\begin{bmatrix} 1 & 0 & \frac{1}{4K} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) \right) \in N_{\text{Aff}(\mathcal{N})}(\pi_4),$$

we can show that $N(0, k/2) \sim N(k/2, 0)$.

Next, assume that N_1 is affinely conjugate to N_2 . Then there exists an element

$$\mu_1 = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{\text{Aff}(\mathcal{N})}(\pi_4)$$

which can conjugate N_1 onto N_2 . From this we must have $x = -u \pm \frac{1}{2p}$. However, since $u = 0, -\frac{1}{2}$ and $p \in 2\mathbb{N}$, $2x = -2u \pm \frac{1}{p}$ is not an integer. This is a contradiction. Thus N_1 is not affinely conjugate to N_2 . Similarly, we can show that $N_1 \nsim N_4$ and $N_2 \nsim N_4$.

Note that

$$\widehat{\alpha} = \left(s_1^{\frac{2v}{K}} s_2^{-\frac{2u}{K}} s_3^{-\frac{p(4uv+K(u+v))}{2K^2}}\right) \cdot \alpha,$$

$$\widehat{\alpha}^2 = s_1^0 s_2^0 s_3^{\frac{p}{K}} = s_3^{\frac{1}{k}} = t_3,$$

$$\widehat{\beta} = \left(s_1^0 s_2^{-\frac{2u}{K}} s_3^{\frac{pu}{2K}}\right) \cdot \beta,$$

$$\widehat{\beta}^2 = s_1^1 s_2^0 s_3^{-\frac{pu}{K}} = s_1 s_3^{-\frac{u}{k}}.$$

Hence, we only need to deal with the following three cases:

(1) When u = 0, v = 0:

Since $\widehat{\alpha}^2 = t_3 = s_3^{\frac{1}{k}}$, $\widehat{\beta}^2 = s_1$, $\widehat{\alpha}t_3\widehat{\alpha}^{-1} = t_3$, and $\widehat{\alpha}\widehat{\beta} = t_1^{-1}t_2^{-1}\widehat{\beta}\widehat{\alpha}t_3^{-(2n+1)}$, we have $\widehat{\alpha}\widehat{\beta} = t_1^{-1}t_2^{-1}t_3^{(2n+1)}\widehat{\beta}\widehat{\alpha}$. So, by using kp = 4n and $p \in 2\mathbb{N}$, we can obtain that

$$\bar{\alpha}\bar{\beta} = \bar{t_3}\bar{\beta}\bar{\alpha} \quad \Leftrightarrow \quad \bar{\beta}\bar{\alpha}\bar{\beta}^{-1} = \bar{\alpha}^{-1}.$$

Therefore the finite group $G = \widehat{\pi_4}/\Gamma_p = \langle t_1, t_2, t_3, \widehat{\alpha}, \widehat{\beta} \rangle / \langle s_1, s_2, s_3 \rangle$ is rep-

$$G = \langle \bar{\alpha}, \, \bar{\beta} \mid \bar{\alpha}^{2k} = 1, \, \bar{\beta}^2 = 1, \, \bar{\beta}\bar{\alpha}\bar{\beta}^{-1} = \bar{\alpha}^{-1}, p \in 2\mathbb{N}, k \in \mathbb{N}, kp = 4n \rangle,$$

which is isomorphic to the dihedral group D_{2k} of order 4k. Note that

G is abelian
$$\Leftrightarrow k = 1, p = 4n \Leftrightarrow G$$
 is $D_2 = \mathbb{Z}_2 \times \mathbb{Z}_2$.

(2) When $u = 0, v = \frac{k}{2}$:

In this case, since $\widehat{\alpha}^2 = t_3 = s_3^{\frac{1}{k}}$, $\widehat{\beta}^2 = s_1$, $\widehat{\alpha}t_3\widehat{\alpha}^{-1} = t_3$, kp = 4n, and $p \in 2\mathbb{N}$, using the following relations,

$$\widehat{\alpha}\widehat{\beta} = t_1^{-1}t_2^{-1}\widehat{\beta}\widehat{\alpha}t_3^{-(2n+1)}t_3^{-\frac{k}{2}} = t_1^{-1}t_2^{-1}t_3^{-(2n+1)}t_3^{-\frac{k}{2}}\widehat{\beta}\widehat{\alpha} = t_1^{-1}t_2^{-1}t_3^{-2n}\widehat{\alpha}^2\widehat{\alpha}^k\widehat{\beta}\widehat{\alpha},$$

we can induce that $\bar{\alpha}\bar{\beta} = \bar{\alpha}^{k+2}\bar{\beta}\bar{\alpha} \Leftrightarrow \bar{\alpha} = \bar{\alpha}^{k+2}\bar{\beta}\bar{\alpha}\bar{\beta} \Leftrightarrow \bar{\beta}\bar{\alpha}\bar{\beta} = \bar{\alpha}^{-k-1} = \bar{\alpha}^{k-1}$.

Therefore the finite group $G = \widehat{\pi}_4/\Gamma_p = \langle t_1, t_2, t_3, \widehat{\alpha}, \widehat{\beta} \rangle / \langle s_1, s_2, s_3 \rangle$ is represented by

$$G_k:=\widehat{\pi_4}/\Gamma_p=\langle\,\bar{\alpha},\bar{\beta}\,|\,\bar{\alpha}^{2k}=1,\,\bar{\beta}^2=1,\,\bar{\beta}\bar{\alpha}\bar{\beta}=\bar{\alpha}^{k-1},\,p,k\in2\mathbb{N}\rangle.$$

In particular, if $k = 2^{m-2}$, then G_k is isomorphic to the semidihedral group SD_{2^m} of order 2^m . Note that G_k is abelian $\Leftrightarrow k=2 \Leftrightarrow G_2=\mathbb{Z}_2\times\mathbb{Z}_4$.

(3) When $u = \frac{k}{2}, v = \frac{k}{2}$: Since $\widehat{\alpha}^2 = t_3 = s_3^{\frac{1}{k}}, \widehat{\beta}^2 = t_1 t_3^{-\frac{k}{2}}, \widehat{\alpha} t_3 \widehat{\alpha}^{-1} = t_3, kp = 4n$, and $p \in 2\mathbb{N}$, from

$$\widehat{\alpha}\widehat{\beta} = t_1^{-1}t_2^{-1}\widehat{\beta}\widehat{\alpha}t_3^{-(2n+1)}t_3^{-k} = t_1^{-1}t_2^{-1}t_3^{2n}t_3^{k}\widehat{\beta}\widehat{\alpha}t_3^{-1} = t_1^{-1}t_2^{-1}t_3^{2n}t_3^{k}\widehat{\beta}\widehat{\alpha}^{-1},$$

we obtain that $\bar{\alpha}\bar{\beta} = \bar{\beta}\bar{\alpha}^{-1} \Leftrightarrow \bar{\alpha}\bar{\beta}\bar{\alpha} = \bar{\beta} \Leftrightarrow \bar{\beta}\bar{\alpha}\bar{\beta}^{-1} = \bar{\alpha}^{-1}$.

Therefore the finite group $G = \widehat{\pi_4}/\Gamma_p = \langle t_1, t_2, t_3, \widehat{\alpha}, \widehat{\beta} \rangle / \langle s_1, s_2, s_3 \rangle$ is rep-

$$G = \widehat{\pi_4}/\Gamma_p = \langle \bar{\alpha}, \bar{\beta} \, | \, \bar{\alpha}^{2k} = 1, \, \bar{\beta}^2 = \bar{\alpha}^k, \, \bar{\beta}\bar{\alpha}\bar{\beta}^{-1} = \bar{\alpha}^{-1}, \, p, k \in 2\mathbb{N}, kp = 4n \rangle.$$

This group is isomorphic to the dicyclic group Dic_k of order 4k. Since $k \in 2\mathbb{N}$, $G = Dic_k$ is nonabelian. The generators $\bar{\alpha}$ and $\bar{\beta}$ act on $\mathcal{N}_p = \mathcal{N}/\Gamma_p$ by

$$\widehat{\alpha} = \left(s_1^{\frac{2v}{K}} s_2^{-\frac{2u}{K}} s_3^{-\frac{p(4uv + K(u+v))}{2K^2}}\right) \cdot \alpha, \quad \widehat{\beta} = \left(s_1^{0} s_2^{-\frac{2u}{K}} s_3^{\frac{pu}{2K}}\right) \cdot \beta.$$

(Type 5.) Note that

$$\widehat{\pi_{5,2}} = \langle t_1, t_2, t_3, \widehat{\alpha} | [t_2, t_1] = t_3^{4n}, \ \widehat{\alpha}^4 = t_3^3, \ \widehat{\alpha} t_1 \widehat{\alpha}^{-1} = t_2 t_3^{u-v},$$

$$\widehat{\alpha} t_2 \widehat{\alpha}^{-1} = t_1^{-1} t_3^{u+v} \rangle,$$

$$\alpha = \left(\begin{bmatrix} 1 & 0 & -\frac{3}{16n} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right) \right).$$

The family $(\pi_{5,2})$ is parametrized by $K=4n;\ K$ is divisible by p. Let K=kp. Conjugations by $\widehat{\alpha}$ yield

$$\mu_{\widehat{\alpha}}(s_1) = s_1^0 s_2^1 s_3^{\frac{p(u-v)}{K}},$$

$$\mu_{\widehat{\alpha}}(s_2) = s_1^{-1} s_2^0 s_3^{\frac{p(u+v)}{K}},$$

$$\mu_{\widehat{\alpha}}(s_3) = s_1^0 s_2^0 s_3^1.$$

By the normality of Γ_p in $\widehat{\pi_{5,2}}$, we must have $\frac{p(u-v)}{K}$, $\frac{p(u+v)}{K} \in \mathbb{Z}$. Since $0 \le u, v < k$, we have u(=v) = 0 or $\frac{k}{2}$. Thus we have the following two normal nilpotent subgroups:

$$N_1 = N(0,0) = \langle t_1, t_2, t_3^k \rangle, \qquad N_4 = N(k/2, k/2) = \langle t_1 t_3^{\frac{k}{2}}, t_2 t_3^{\frac{k}{2}}, t_3^k \rangle.$$

It is not hard to see that the normalizer $N_{\text{Aff}(\mathcal{N})}(\pi_{5,i})$ is of the form

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right),$$

where $x + y, x - y \in \mathbb{Z}$, $z \in \mathbb{R}$, and x^2 must be a multiple of $\frac{1}{K}$, and

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix},$$

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

If p = 1, then it is easy to show that $N_1 \sim N_4$ by using

$$\mu = \left(\begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \right) \in N_{Aff(\mathcal{N})}(\pi_{5,2}).$$

Let p > 1. If there exists an element

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{\text{Aff}(\mathcal{N})}(\pi_{5,2})$$

which can conjugate N_1 onto N_4 , then we obtain that $x = \pm \frac{1}{2p}$ and $y = \pm \frac{1}{2p}$. So, $x + y \notin \mathbb{Z}$ or $x - y \notin \mathbb{Z}$. This is a contraction. Therefore N_1 is not affinely conjugate to N_4 .

Note that

$$\widehat{\alpha} = \left(s_1^{\frac{v-u}{K}} s_2^{-\frac{u+v}{K}} s_3^{\frac{pu^2}{K^2}}\right) \cdot \alpha,$$

$$\widehat{\alpha}^4 = s_1^{0} s_2^{0} s_3^{\frac{3p}{K}} = s_3^{\frac{3}{k}}.$$

Also, since $\widehat{\alpha} = (\widehat{\alpha}^{-1}t_3)^3$ and $t_3 = (\widehat{\alpha}^{-1}t_3)^4$, for any u, v, we have $(\widehat{\alpha}^{-1}t_3)^{4k} = s_3 \in \Gamma_p$. Hence,

$$G = \widehat{\pi_{5,2}}/\Gamma_n = \mathbb{Z}_{4k} = \langle \bar{\alpha}^{-1}\bar{t_3} \mid (\bar{\alpha}^{-1}\bar{t_3})^{4k} = 1 \rangle,$$

where $\bar{\alpha}^{-1}\bar{t_3}$ acts on $\mathcal{N}_p = \mathcal{N}/\Gamma_p$ by

$$\widehat{\alpha}^{-1}t_3 = \left(s_1^{\frac{u+v}{K}} s_2^{\frac{v-u}{K}} s_3^{\frac{p}{K} - \frac{pu^2}{K^2}}\right) \cdot \alpha^{-1},$$

for (u, v) = (0, 0), (k/2, k/2).

(Type 6.) Some calculations show that

$$\widehat{\pi_{6,1}} = \langle t_1, t_2, t_3, \widehat{\alpha} \, | \, [t_2, t_1] = t_3^{3n}, \, \widehat{\alpha}^3 = t_3, \, \widehat{\alpha} t_1 \widehat{\alpha}^{-1} = t_2 t_3^{u-v}, \, \widehat{\alpha} t_2 \widehat{\alpha}^{-1} = t_1^{-1} t_2^{-1} t_3^{u+2v} \, \rangle_{2n}$$

$$\alpha = \left(\begin{bmatrix} 1 & 0 & -\frac{1}{9n} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \right) \right).$$

The family $(\pi_{6,1})$ is parametrized by K=3n; K is divisible by p. Let K=kp. Conjugations by $\widehat{\alpha}$ yield

$$\mu_{\widehat{\alpha}}(s_1) = s_1^0 s_2^1 s_3^{\frac{p(u-v)}{K}},$$

$$\mu_{\widehat{\alpha}}(s_2) = s_1^{-1} s_2^{-1} s_3^{\frac{p(u+2v)}{K}},$$

$$\mu_{\widehat{\alpha}}(s_3) = s_1^0 s_2^0 s_3^1.$$

By the normality of Γ_p in $\widehat{\pi_{6,1}}$, we have $\frac{p(u-v)}{K}$, $\frac{p(u+2v)}{K} \in \mathbb{Z}$. Since $0 \le u, v < k$, we can conclude that u(=v) = 0, $\frac{k}{3}$, or $\frac{2k}{3}$. Thus we have the following three types of normal nilpotent subgroups:

$$N_{1} = N(0,0) = \langle t_{1}, t_{2}, t_{3}^{k} \rangle,$$

$$N_{2} = N(k/3, k/3) = \langle t_{1}t_{3}^{\frac{k}{3}}, t_{2}t_{3}^{\frac{k}{3}}, t_{3}^{k} \rangle,$$

$$N_{3} = N(2k/3, 2k/3) = \langle t_{1}t_{3}^{\frac{2k}{3}}, t_{2}t_{3}^{\frac{2k}{3}}, t_{3}^{k} \rangle.$$

By calculation, we obtain that the normalizer $N_{\text{Aff}(\mathcal{N})}(\pi_{6,i})$ is of the form

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right),$$

where $z \in \mathbb{R}$, and if ad - bc = 1, then $x + y \in \mathbb{Z}$, $-x + 2y \in \mathbb{Z}$, and

$$\begin{pmatrix} \begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{6} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} \frac{1}{6} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix} \end{pmatrix};$$

and if ad - bc = -1, then $x + y \in \mathbb{Z}$, $2x - y \in \mathbb{Z}$, and

$$\begin{pmatrix} \begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{2} \\ 0 \end{bmatrix}, \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} -\frac{1}{3} \\ -\frac{1}{6} \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix} \end{pmatrix}, \\
\begin{pmatrix} \begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \end{pmatrix}, \begin{pmatrix} \begin{bmatrix} \frac{1}{6} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} \end{pmatrix}.$$

By using
$$\mu = \begin{pmatrix} \begin{bmatrix} 1 & -\frac{1}{3} & 0 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 1 \end{bmatrix}, \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} \in N_{\text{Aff}(\mathcal{N})}(\pi_{6,i})$$
, we can

show that if p = 1, then $N_1 \sim \bar{N_2} \sim N_3$ and if p = 2, then $N_1 \sim N_3$. Let $p \geq 2$. In this case, we will show that N_1 is not affinely conjugate to N_2 . Assume that if there exists

$$\mu = \left(\begin{bmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{bmatrix}, \ \left(\begin{bmatrix} u \\ v \end{bmatrix}, \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right) \in N_{\text{Aff}(\mathcal{N})}(\pi_{6,i})$$

which can conjugate N_1 onto N_2 , then μ is one of the following two types:

(1) when ad - bc = 1,

$$\left(\begin{bmatrix} 1 & -\frac{1}{3p} & z \\ 0 & 1 & \frac{1}{3p} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)\right), \left(\begin{bmatrix} 1 & \frac{-1+p}{3p} & z \\ 0 & 1 & \frac{1-p}{3p} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}\right)\right)$$

(2) when ad - bc = -1,

$$\begin{pmatrix} \begin{bmatrix} 1 & \frac{-1+p}{3p} & z \\ 0 & 1 & \frac{1-p}{3p} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} -\frac{1}{3} \\ \frac{1}{3} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right) \end{pmatrix}, \left(\begin{bmatrix} 1 & -\frac{1}{3p} & z \\ 0 & 1 & \frac{1}{3p} \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \right) \right).$$

However, since $p \geq 2$, if ad - bc = 1, then $-x + 2y = \frac{1}{p}, \frac{1}{p} - 1 \notin \mathbb{Z}$, and if ad - bc = -1, then $2x - y = -\frac{1}{p} + 1, -\frac{1}{p} \notin \mathbb{Z}$. This is a contradiction. Therefore there does not exist $\mu \in N_{\mathrm{Aff}(\mathcal{N})}(\pi_{6,i})$ which conjugates N_1 onto N_2 .

Similarly we can prove that if $p \geq 3$, then N_1 is not affinely conjugate to N_3 , and if $p \geq 2$, then N_2 is not affinely conjugate to N_3 . So, we can obtain that

$$\begin{split} p &= 1 \Longrightarrow N_1 \sim N_2 \sim N_3, \\ p &= 2 \Longrightarrow N_1 \sim N_3, \ N_1 \nsim N_2, \\ p &\geq 3 \Longrightarrow N_1 \nsim N_2, \ N_1 \nsim N_3, \ N_2 \nsim N_3. \end{split}$$

Note that

$$\widehat{\alpha} = \left(s_1^{\frac{v-u}{K}} s_2^{-\frac{2u+v}{K}} s_3^{\frac{p(-Ku+3u^2)}{2K^2}}\right) \cdot \alpha,$$

$$\widehat{\alpha}^3 = s_1^{0} s_2^{0} s_3^{\frac{p}{K}} = s_3^{\frac{1}{k}}.$$

For any $u, v \in \mathbb{Z}$, we have $(\widehat{\alpha}^3)^k = s_3 \in \Gamma_p$. Therefore we can get

$$G = \widehat{\pi_{6,1}}/\Gamma_p = \mathbb{Z}_{3k} = \langle \bar{\alpha} \mid \bar{\alpha}^{3k} = 1 \rangle,$$

where $\bar{\alpha}$ acts on $\mathcal{N}_p = \mathcal{N}/\Gamma_p$ by

$$\widehat{\alpha} = \left(s_1^{\frac{v-u}{K}} s_2^{-\frac{2u+v}{K}} s_3^{\frac{p(-Ku+3u^2)}{2K^2}}\right) \cdot \alpha,$$

for (u, v) = (0, 0), (k/3, k/3), (2k/3, 2k/3).

Next we deal with the case of

$$\widehat{\pi_{6,3}} = \langle t_1, t_2, t_3, \widehat{\alpha} \mid [t_2, t_1] = t_3^{3n-2}, \ \widehat{\alpha}^3 = t_3^2, \ \widehat{\alpha} t_1 \widehat{\alpha}^{-1} = t_2 t_3^{u-v},$$

$$\widehat{\alpha} t_2 \widehat{\alpha}^{-1} = t_1^{-1} t_2^{-1} t_3^{u+2v} \ \rangle,$$

$$\alpha = \left(\begin{bmatrix} 1 & 0 & -\frac{2}{9n-6} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \left(\begin{bmatrix} 0 \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix} \right) \right).$$

The family $(\pi_{6,3})$ is parametrized by K = 3n - 2; K is divisible by p. Let K = kp. Conjugations by $\widehat{\alpha}$ yield

$$\begin{split} &\mu_{\widehat{\alpha}}(s_1) = s_1{}^0 s_2{}^1 s_3{}^{\frac{p(u-v)}{K}},\\ &\mu_{\widehat{\alpha}}(s_2) = s_1{}^{-1} s_2{}^{-1} s_3{}^{\frac{p(u+2v)}{K}},\\ &\mu_{\widehat{\alpha}}(s_3) = s_1{}^0 s_2{}^0 s_3{}^1. \end{split}$$

Since Γ_p is normal in $\widehat{\pi_{6,3}}$, we must have $\frac{p(u-v)}{K}$, $\frac{p(u+2v)}{K} \in \mathbb{Z}$. Since $0 \le u, v < k$, we can conclude that u(=v) = 0, $\frac{k}{3}$, or $\frac{2k}{3}$. In this case, since K = kp = 3n - 2, $\frac{k}{3} = \frac{3n-2}{3p}$ and $\frac{2k}{3} = \frac{2(3n-2)}{3p}$ cannot be integers. Thus we have only one normal nilpotent subgroup

$$N(0,0) = \langle t_1, t_2, t_3^k \rangle.$$

Note that

$$\widehat{\alpha} = \left(s_1^{\frac{v-u}{K}} s_2^{-\frac{2u+v}{K}} s_3^{\frac{p(-Ku+3u^2)}{2K^2}}\right) \cdot \alpha,$$

$$\widehat{\alpha}^3 = s_1^{0} s_2^{0} s_3^{\frac{2p}{K}} = s_3^{\frac{2}{k}}.$$

Also, since $\widehat{\alpha} = (\widehat{\alpha}^{-1}t_3)^2$ and $t_3 = (\widehat{\alpha}^{-1}t_3)^3$ for any u, v, we have $(\widehat{\alpha}^{-1}t_3)^{3k} = s_3 \in \Gamma_p$. Hence we obtain

$$G = \widehat{\pi_{6,3}}/\Gamma_p = \mathbb{Z}_{3k} = \langle \bar{\alpha}^{-1}\bar{t_3} \mid (\bar{\alpha}^{-1}\bar{t_3})^{3k} = 1 \rangle,$$

where $\bar{\alpha}^{-1}\bar{t_3}$ acts on $\mathcal{N}_p = \mathcal{N}/\Gamma_p$ by

$$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{p}{K}} \cdot \alpha^{-1}.$$

The other cases can be done similarly.

According to the Theorem 3.1, if p = 1, then we can obtain the following result which is the same as the Theorem 3.3 of [3].

COROLLARY 3.2. Suppose G is a finite group acting freely on the standard nilmanifold \mathcal{N}_1 with no translations except for homotopy-trivialities. Then G is cyclic, and it is one of the following.

Table 2

\overline{G}	Generator of G	\mathcal{N}_1/G	Conditions on u, v	Conditions on $K = kp$
\mathbb{Z}_k	$t_3 = s_3^{\frac{1}{K}}$	π_1	u = 0, v = 0	n = k = K
\mathbb{Z}_{2k}	$\widehat{\alpha} = \alpha$	π_2	u = 0, v = 0	2n = k = K
\mathbb{Z}_{4k}	$\widehat{\alpha} = \alpha$	$\pi_{5,1}$	u = 0, v = 0	4n - 2 = k = K
	$\widehat{\alpha} = \left(s_2^{-1} s_3^{\frac{1}{4}}\right) \cdot \alpha$		$u = \frac{k}{2}, v = \frac{k}{2}$	4n - 2 = k = K
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{5,2}$	u = 0, v = 0	4n = k = K
	$\widehat{\alpha} = \alpha$	$\pi_{5,3}$	u=0, v=0	4n = k = K
\mathbb{Z}_{3k}	$\widehat{\alpha} = \alpha$	$\pi_{6,1}$	u=0, v=0	3n = k = K
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{6,2}$	u = 0, v = 0	3n = k = K
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{6,3}$	u = 0, v = 0	3n - 2 = k = K
	$\widehat{\alpha} = \alpha$	$\pi_{6,4}$	u = 0, v = 0	3n - 1 = k = K
\mathbb{Z}_{6k}	$\widehat{\alpha} = \alpha$	$\pi_{7,1}$	u=0, v=0	6n = k = K
	$\widehat{\alpha} = \alpha$	$\pi_{7,2}$	u=0, v=0	6n - 2 = k = K
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{7,3}$	u=0, v=0	6n = k = K
	$\widehat{\alpha}^{-1}t_3 = s_3^{\frac{1}{K}} \cdot \alpha^{-1}$	$\pi_{7,4}$	u=0, v=0	6n - 4 = k = K

In [1, 3], any finite group acting freely on the nilmanifold \mathcal{N}_p is abelian. However, as we can see in the following example, if a finite group acts freely on \mathcal{N}_p with homotopically trivial translations, there

exist nonabelian groups which yield orbit manifolds homeomorphic to \mathcal{N}/π_3 or \mathcal{N}/π_4 .

EXAMPLE 3.3. Let G be a finite group of order 16 acting freely on $\mathcal{N}_p(p \in 2\mathbb{N})$ with homotopically trivial translations. Then G is one of the following four groups:

 \mathbb{Z}_{16} , dihedral group D_8 , dicyclic group Dic_4 , semidihedral group $SD_{16} = G_4$.

In each case, non-affinely conjugate actions are as follows:

- \mathbb{Z}_{16} : one in π_1 , three in π_2 , two in $\pi_{5,i}(i=2,3)$.
- D_8 : one in $\pi_3(k=8)$, one in $\pi_4(k=4)$.
- Dic_4 : one in $\pi_3(k=8)$, one in $\pi_4(k=4)$.
- SD_{16} : one in π_4 .

Acknowledgement. This study was financially supported by Research Fund of Chungnam National University.

References

- [1] D. Choi and J. K. Shin, Free actions of finite abelian groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 42 (2005), no. 4, 795–826.
- [2] D. H. Koo, M. S. Oh, and J. K. Shin, Classification of free actions of finite groups on 3-dimensional nilmanifolds, J. Korean Math. Soc., 54 (2017), no. 5, 1411–1440.
- [3] H. Y. Chu and J. K. Shin, Free actions of finite groups on the 3-dimensional nilmanifold, Topology Appl., 144 (2004), 255–270.
- [4] K. Dekimpe, P. Igodt, S. Kim, and K. B. Lee, Affine structures for closed 3dimensional manifolds with nil-geometry, Quarterly J. Math. Oxford, 46 (1995), no. 2, 141–167.
- [5] K. Y. Ha, J. H. Jo, S. W. Kim, and J. B. Lee, Classification of free actions of finite groups on the 3-torus, Topology Appl., 121 (2002), no. 3, 469–507.
- [6] W. Heil, On P²-irreducible 3-manifolds, Bull. Amer. Math. Soc., 75 (1969), 772-775.
- [7] W. Heil, Almost sufficiently large Seifert fiber spaces, Michigan Math. J., 20 (1973), 217-223.
- [8] J. Hempel, Free cyclic actions of $S^1 \times S^1 \times S^1$, Proc. Amer. Math. Soc., 48 (1975), no. 1, 221–227.
- [9] K. B. Lee, There are only finitely many infra-nilmanifolds under each manifold, Quarterly J. Math. Oxford, 39 (1988), no. 2, 61–66.
- [10] K. B. Lee and F. Raymond, Rigidity of almost crystallographic groups, Contemporary Math., 44 (1985), 73–78.
- [11] K. B. Lee, J. K. Shin, and Y. Shoji, Free actions of finite abelian groups on the 3-Torus, Topology Appl., **53** (1993), 153–175.

- [12] P. Orlik, Seifert Manifolds, Lecture Notes in Math., 291, Springer-Verlag, Berlin, 1972.
- [13] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc., ${\bf 15}$ (1983), 401–489.
- [14] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), no. 2, 56–88.
- [15] S. Wolfram, Mathematica, Wolfram Research, 1993.

*

Daejeon Science High School for the Gifted Daejeon, 34142, Korea *E-mail*: dhkoo2011@gmail.com

**

Daejeon Foreign Language High School Daejeon, 35280, Korea *E-mail*: pem0104@naver.com

Department of Mathematics Education Chungnam National University, Daejeon, 34134, Korea E-mail: jkshin@cnu.ac.kr